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7.1 Dividing the dataset
PR X 2

XN BFEERA T 8 ZIFHV HIFEHED

The dataset is partitioned to optimize model training and evaluation.



/.7 IDiViding the Dataset

»> Why Divide the Dataset? Evaluate Model Generalization Ability
 Training Set (V| 4 %)

e Used to train model parameters
* The model learns patterns and rules from this data
 Validation Set (% 1iE

* Used to evaluate model performance and tune hyperparameters (f J+F4&

A R RE AR R0
« Can be evaluated multiple times to guide model optimization (3 #4£T % X +F
1, BIFRALAT ™)



/.7 IDiViding the Dataset

»> Why Divide the Dataset? Evaluate Model Generalization Ability

o MK E (Test Set)
« Used for final evaluation of model performance on new data (F Jx &+

R AR L AMER)

* Used only once, simulating real-world performance aftter deployment

« (R A—Kk, BRUBRTRELSHAELRIN)



/.7 IDiViding the Dataset

» Key Principles

« Independence Principle (% & M)
* The test set should be independently sampled from the same true distribution

as the training set. Ensure training and test sets are as mutually exclusive as

possible.
* MEAFEBKRENGERMRHEESF PREIRME. KT RAEN 5K S R K
REZF.



/.7 IDiViding the Dataset

» Key Principles

« Consistency Principle (—Z /& 1)
* The train/test split should maintain consistency in data distribution as much
as possible. Avoid data distribution shift caused by splitting.
© D ER/RAR] AT RARMRE D H I —E., BELE X 5T EABIES
A aAs .



/.7 IDiViding the Dataset

» Key Principles

« Representativeness Principle (X & M/& )
* Each subset should sufficiently represent the characteristics of the original
dataset. For imbalanced data, stratified sampling should be used.
* BTEREAIRRAREBBERAFIE, N TRARFHEE, BERRALSEW
#.



/.7 IDiViding the Dataset

» Key Principles

« Representativeness Principle (X & M/& )
* Each subset should sufficiently represent the characteristics of the original
dataset. For imbalanced data, stratified sampling should be used.
* BTEREAIRRAREBBERAFIE, N TRARFHEE, BERRALSEW
#.



/.7 IDiViding the Dataset

> Method 1: Hold-Out Method (& i %)

* Basic Concept:
* Directly divide dataset D into two mutually exclusive sets. Usually divided by
a certain ratio (e.g., 2:1, 4:1, 7:3 or 8:2).
c BHEWBREEDRFARNZFARES. BFEE—2WH RS (Ge2:1,4:1,
7:3%8:2) .

D = Dtrain U Dtest:n Dtrain M Dtest —N @



/] IDiViding the Dataset i‘ﬁiilk‘%{

> Method 1: Hold-Out Method (& i %)

e (Considerations:

* Single division is random — .--

Usually perform multiple random 1 S2. 83, 54 S1
divisions, take average results. 2 S1. S3. S4 S2
e BRIHSAAMMME S EBE LR 3 S, 82, s4 S3

FEALR] 2, BCRLE X, 4  SI.S2.S3 S4



/.7 IDiViding the Dataset

> Method 1: Hold-Out Method (& i %)

* Maintain data distribution — Stratified sampling can be used to maintain
class proportions.

© BREBELFTF — TR EHFRE LA Y.

* Common ratio: Training set : Test set = 2:1 to 4:1.

o FHIA: MLENRXE =2:13 4:1.



/.1 IDiViding the Dataset k&2 x R¥

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

> Method 1: Hold-Out Method (& i %)

Training set utilization rate = The test set contains only one sample, which

Data Utilization Rate 100%, retaining all data is vulnerable to the influence of outliers(% %
information 1#).
Evaluating Stability Unique partitioning, stable The mdlcators. are biased toward the majority
results, no randomness class in imbalanced datasets.
C No additional simplification Iterating N times is prohibitively expensive
omputer costs
costs for complex models and large datasets.

Small sample size, sparse
Applicable Scenarios data, and models require
precise scenario evaluation.

Large-scale samples, complex models, and
imbalanced category scenarios

No risk of leakage, objective

Information leak
assessment

No apparent information leakage issues



/] I Dividing the Dataset ‘ﬁﬁiil *%'L

> Method 2: Cross-validation method (X {34 i%)

* Randomly divide dataset D into k similar-sized, mutually exclusive subsets.

o KREEDMMI AKX NRMELLF T .

* Each time use the union of k-1 subsets as training set, remaining subset as
test set.

« HBRERAK-INTEHFEAEINEE, REKINTEAEARXE.

* Repeat k times, obtain k test results, take average as-{inal evaluation.

« THEKR, FIRNRRXLER, BCFHEAEN L.



/.7 IDiViding the Dataset

> Method 2: Cross-validation method (X {34 i%)

D
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I 45 5 YURE S
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7.7 IDividing the Dataset O % #s x k¥

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

> Method 2: Cross-validation method (X {34 i%)

* Similar to the leave-one-out method, there are multiple ways to divide a
dataset D into Kk subsets.

* To minimise variations introduced by different sample divisions, k-fold
cross-validation typically employs random divisions repeated p times.

* The final evaluation result is the mean of the p times k-fold cross-
validation outcomes. For instance, the common ‘10-fold cross-validation

repeated 10 times’.



/.7 IDiViding the Dataset

> Method 2: Cross-validation method (X {34 i%)

 Special Case: Leave-One-Out, LOO (4% X: §—ik)
* When Kk equals sample size m: k = m. Each subset contains only one
sample. Advantages: Not affected by random division, stable results.

Disadvantages: Large computational overhead, suitable for small

datasets.
o LKFFHAKME: k=m, FAFEREA—AHLA RE RE
FALX 2%, SRR, Hi: FHEFHEL AT IRESR.



/.7 IDiViding the Dataset

Y % di stz K ¥

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

Standard k-
fold
(k=5/10)
(FrrEKHT)

Layered k-
foldﬁgk
r

Leaving
One
Method(k=
N)

Balancing computational cost and evaluation
accuracy, with the widest ran%e of a 'EEllcable

scenarios. SEE B A S
% Eﬂir- ;E o

Maintain the distribution of each fold category

consistent with the original data, adaptin
imbalanced data.{R3F —EI’E'EI(J?ESHS‘ %

IREIE—, ENAFELRE

Training set utilization rate: 100%, with stable
results and no fluctuations. || Zx&EFI FH 2 :

100%, ERIBE, TKE,

Normal k-folding is not well-suited for
imbalanced data; results exhibit slight

fluctuations. FIESAFHEIE; SR
FEERER

Applicable only to classification tasks;
regression tasks cannot be hierarchical.

REATHEMES; ERESTEE
BRE.

Extremely costly to compute (unusable
when N is large); highly susceptlble to

outliers.it& ZIKWM (HNB AT
EEER) ; NREEIERESUR,



/.7 IDiViding the Dataset

) % fi itz K ¥

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

fold k
times(ESE
k3T

Group k-
fold
(4HKHT)

Time Series
k-Fold (Bt
1B FE 51 k#T)

The results demonstrate superior stability
compared to conventional k-folds, enabling

more rehable evaluation.Z5 R Lt %*ﬂk?ﬁﬁ%
E ﬁEﬁB ET%E%:HE o

Avoid cross-set association of samples; adapt
to data with grouping characteristics (e.g.,
users, experiment batches). J&%ﬁZISE;FI__IE
SEFFEXREK,; ENRESAFENSEE (F)
, AP, SIRH#R) .

ic and adapts

=) I%ﬁ

Conforms to temporal causal lo
to time-series forecasting tasks

58, SN E FRFIFIES o

The computational cost is the number
of repetitions multiplied by the
standard k-fold value (e.g., 5
repetitions = 5%k models) 'l«'|'§522|5x5
EE))’Z&%LMJ&)EHEE@JEZZIS (B,

SREE = 5xk MERTE]%)
Clear grouping labels are required

unequal grouping may compromlse
assessment effectiveness. EERHERN S

ggﬁ,ﬁﬁkaﬂT%%Mﬁﬁ

The training set contains only historical

data, and the training set for some
rounds is relatively small.il| xR &

B EEE, ;wﬁemmuﬁﬁmﬁ
BN



/.7 IDiViding the Dataset

> Method 3: Bootstrap Method ( § Bj i)

* Basic Idea:

* Randomly sample m times with replacement from dataset D containing m
samples. Form training set D' (containing about 63.2% of original
samples). Samples not appearing in D' (about 36.8%) serve as test set.

o« KeLmAFRGBEEDFAHREREMRENK., HBAINEED (&
A8632%MRIEHER) . RBLAD' FTHHER (2936.8%) FFhRRE.



/.7 IDiViding the Dataset

> Method 3: Bootstrap Method ( § B} i)

* Mathematical Principle:

* The probability that a sample is never selected in m samplings:

o AR EMR R AT P R

lim (1 — 1) =~ ! ~ (0.368
e

M—00 m

* Therefore, training set D' contains about 63.2% of samples from the

original dataset.

« EHb, MNEED' KXY EAREEEE F632%MH K,



/.7 IDiViding the Dataset ) iﬁiilk
» Comparison and Selection of Three Methods
Method Advantages (£ &) Disadvantages (& %) Suitable Scenarios (& ] 3% =)
/8 oA 1] 22
Hold-Out | - %14k SRERAASY N xang
57 . s N A =2 : ) I B A E Y S 2
(g &%) ARG ORI B 1 Pk P4k
k-Fold CV . ) ‘
e R < ilibay TR R - AL A
g | EEERER kERBY LR | - FEHRRIESR
- g AN
Bootstrap - E SIS )fié’frg}i 77 R - B AR
; - AN 2 % - ERES
(B 8hi%) TAERE NI SHE K A A R 5]




/.7 IDiViding the Dataset

> Selection Guide:

* When data is abundant (¥ 3% # % &): Prefer hold-out or cross-validation
(RARRA G &k XX XEE )

* When data is limited (¥ 3%&%% V" &): Consider k-fold cross-validation (k can
be increased appropriately) (F &4 A k3T X X% (KTiE 23¢X) )

* When data is very limited ($3%&3F %% % IR E): Try bootstrap, but be aware
of its bias (T Z X Ak, PFTEEHRBE)

« Ensemble learning scenarios (% & 5 5] 3% %): Bootstrap can generate

multiple diverse training sets, helping improve model diversity (&g 8y i T
2REANMHEFONNGE, AHTRAEY S H M)



/.7 IDiViding the Dataset

»> Key Points:

* Strictly distinguish the purposes of training, validation, and test sets. (/ #&
Roal sk, BiEfAn XL R E)

 Test set can only be used once for final evaluation. (WX & = #8841 — &,
FI T sx 4597 4%)

* Choose appropriate division method based on data size and task
requirements. (A& 4% K # AL 5 F KB FSENX 2 F &)

* For important decisions, use multiple random divisions or cross-validation
for more reliable results. (3 FE£ &2 %, R 2 REMNR] 2 R XX 1E
ARFRTHRAHER)



/.7 IDiViding the Dataset

> Practical Advice:

« Use random seeds to ensure experiment reproducibility. (4& B F AUf T 5%
EE BT Z i)

 Use stratified sampling for imbalanced data. (% & 34 4L 22 X ) -F#r %
%)

« Record information of each division for traceability. (32 X & X X] 58913 &
2 T3E #)

* Consider the special of time series data (avoid future information leakage).

(FREE A7 BEHHRE (B LARE SRE) )



7.2 Undertitting & Overtfitting
RIAG-&L wh 4

MEF )N BRART LG 55, RRAMERSZRIFBEHRY
The goal of machine learning is not to perfectly fit the training data, but to build
models that generalize to new data.



7.2 | Underfitting & Overfitting

» Two Common Issues:
« R 3¥14- (Underfitting)
« BN THE, LEHITEEPHELREX.

* The model is too simple to capture the underlying patterns in the data.

« F4 (Overfitting)
« BUIFTFER, FRFEITHLE, LFIT T I E%KEETF RS FEIES.
* The model is too complex, learning not only the patterns but also the noise

and random fluctuations in the training data.



7.2 [ Underfitting & Overfitting O % fitx k¥

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

> Key Metrics: Error rate & Error (GRZH & % 2£)

* Error Rate (1% £ F /8% %)
* Proportion of misclassified samples.
« E = a/m (mis total number of samples; a is misclassified samples)
« Accuracy (W E)
* Accuracy =1-E
* Since we do not know the features of new samples beforehand, we can only strive to
minimise empirical error;
* Although we can often achieve zero classification error on the training set, in most

cases such a learner is not desirable.



/.2 IUnderfitting & Overfitting

> Key Metrics: Error rate & Error (GRZH & % 2£)

* Training Error (D] %% £)
« The error rate of the model on the training set. & A& 9| 4 & k6548 % %)

o ZAERZE /RKRE (Generalization / Test Error)
« The expected error rate of the model on unseen data (test set).(2 % &4 it
M5 AR (MAR) ESmBAERE. )



/.2 IUnderfitting & Overfitting

» Understanding Underfitting & Overfitting

Phenomenon Training Error gﬁr;?ralization Model State

Underfitting High High Too Simple
Good Fit Low Low Appropriate

Overfitting Low High Too Complex




/.2 IUnderfitting & Overfitting L& KY

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

» Understanding Underfitting & Overfitting

Overfitting: The learner treats the
AR BH);ELER:
w > RAH T < s
" . 0 ot B A ] features of the training samples
. # themselves as general properties that
5
# Z .
P KA A £ R all potential samples will possess.
P Sl > Rt
& LRGP TXEFIIED
Underfitting: The general

r rti f the trainin mpl
FHA . KA 8 H AL properties of the training samples

have not been adequately learned

by the learner.



/.2 IUnderfitting & Overfitting

» Understanding Underfitting & Overfitting
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02F
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sl ANHUE UNIVERSITY OF SCIENCE & TECHNOLAOGY




7.2 | Underfitting & Overfitting

> Strategies to Address Underfitting

 Increase Model Complexity GgmiE A § 4 & ): Use more powerful models .

« Add More Features (f/2 £ % 454E): Introduce more informative features or
feature combinations.

« Reduce Regularization Strength (i " 1E 0] 4. 7% & ):Reduce constraints on model
weights.

e Increase Training Epochs/Time (3% /= 4:4 2k /0 [8]): Give the model more

opportunities to learn patterns.



7.2 | Underfitting & Overfitting

> Strategies to Address Overfitting
Get More Training Data (GKIX £ % 9| 4 #4%): One of the most effective methods.
Reduce Model Complexity (& A2 R § 22 & ): Choose a simpler model architecture.
Apply Regularization( A F i 0] 4L): L1/L2 regularization to increase model smoothness.
Use Dropout - for Neural Networks (/& fl Dropout (##%4 ® #5) Randomly “turn off” a
portion of neurons to prevent co-adaptation.
Early Stopping (%1% i%): Stop training when validation set performance starts to
degrade.
Feature Selection / Dimensionality Reduction (45 £t #%/[% 4 ):Remove redundant or

irrelevant features.



/.2 IUnderfitting & Overfitting

P o M,
5 O
: ; 3'
;)
A 4
3,0 £
1943

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

» Key Takeaways

2 B A& 35 AL IE ] £ | AL £

The goal is low generalization error, not low training error.
RAGHe L SRR ) 5B LR EEN R,
Underfitting and Overfitting indicate a mismatch between model capacity and data
complexity.

F2 iRt & Wz A0S A 8B R 4 =] AR
Diagnose issues by monitoring model generalization performance on a validation set.
AR C—HE”, FARSE FARF A Ao B I 2 N K%

There is no “one-size-fits-all” solution; choose strategies based on the specific

problem and data.



7.3 Inductive Preference

)2 241 4T

Inductive preference is the "philosophy” behind your machine learning
practice. Being aware of it helps you choose models more wisely and
understand their limitations.
JERRTFRAEMEFIERELEY “UF™ . TRACTUAFNIRZAT

Mo FAR T S AR L5 MRbE,



/3 IInductive Preference

» The Core Question:

LEARYALER FAAAME, KNEZEHFR—A
When multiple models show similar performance on the validation set, which
one should we choose?

e Answer:

* We need guiding principles—this is where Inductive Preference comes in.

« AMERRX/FRUN—XHAR )2 WRITAIER.



/3 IInductive Preference

> What is Inductive Preference?

* Inductive preferences are the heuristics or "values' that guide a learning
algorithm to select one hypothesis over another in a vast hypothesis space. In
other words, it is the algorithm's built-in bias toward certain types of solutions.

o FWRBITFRIEFF I HE AR KB ZE FLEXABE R IELRBR NG
A XN P, Ba)#EH, CREAENENH R REB r XeIRIT.

* Key Insight: The alignment between an algorithm's inductive preference and the

true nature of the problem often determines its success.

XA HEHBRARBITFERMALENERAZBGEERE, FF k2L RIK.



/3 IInductive Preference

> What is Inductive Preference?

« A carpenter (% / algorithm) has many tools (2% / models).

- KE (f#) #AAHFZITHE (BE) .

* Their preference for a hammer over a saw for driving nails is an inductive
preference.

o eV ® T RETRIEETRATATT, XA —FF )3 BiRiT.

* This preference is generally good but may fail for special nails.

o XA RITEFTRITE), (2N TFHARNTTTRSEK.



/3 IInductive Preference

> Principle 1: Occam's Razor (34 #] 77)

* "Entities should not be multiplied beyond necessity." Or more simply:

Among competing hypotheses that explain the data equally well, choose the

simplest one.

R, PHEEKR. VIR AERL ARAEGARERRENES
BOR P, BEFRFEGRA



/3 IInductive Preference

> Principle 1: Occam's Razor (& F %5 77)

* Application in Machine Learning:

Favors models with fewer parameters, smoother functions, or shorter
decision trees when performance is comparable. /2 P s AL B, RIFA
BRI, HER TR R AN ZAAGRY,

Acts as a guard against overfitting 4 % ikt A 89—FF F &,
Simplicity here is not about computational ease, but about explanatory
complexity.

XEWRERARIBTHES, RRIBEEN TN,




/3 IInductive Preference

> Principle 2: No Free Lunch Theorem (NFL) (A8 £ % F 2 £ )

"If algorithm A outperforms algorithm B on some set of problems, then
there will necessarily exist other sets of problems where B outperforms A."
“hoR A EFALXEFA LIWHEBRAARIF, MALRALEG—XFAL,
AARE A LB AN TA, 7

No universally best algorithm: There is no single learning algorithm that is
inherently superior for all possible problems.% f && R K09 H ik: EA 7R
—ANF 3 F i RAEX TR T 6669 B AR R AR



/3 IInductive Preference

> Principle 2: No Free Lunch Theorem (NFL) (A8 £ % F 2 £ )

* Context is king: The discussion of which algorithm is "better" is
meaningless without specifying the problem domain and data distribution.3%
FEL: R RBREFFEMBSBELH, TRIANALEZRIFRERE

* Justifies specialization: It's okay and necessary to design algorithms tailored
for specific types of problems (e.g., CNNs for images, RNNs for sequences).

« AT FRAHESEM: HMHRRXYFA (Flde, CNNATE®S, RNNAH
FA7)) R HEREEALR,



/3 IInductive Preference

»> Balancing the Two Principles

* Occam's Razor gives a general guideline for selection within a given context.

* RTFBANNAELZHFAAEERETENE .

* No Free Lunch reminds us that there is no universal guideline valid across

all contexts.

* AAATTFERERBEAMN, TRAAEGHARRARAKNERES.



/3 IInductive Preference

»> Balancing the Two Principles

* Define the problem and data context clearly. (B R < Pl fe K %. )

 Among top performers, apply Occam's Razor to prefer simpler models, all
else being equal. (AR AREARY T, pAleFH4ARN, BARTFHA
7 4m 3T R R AR A, )

* Accept that a model chosen this way may not perform well on a radically
different problem. X I H L FNRY TR AL SR A ERAR
. )



7.4 Performance Metrics
M BE 38 AR

Performance metrics are evaluation criteria for the generalization capability of
models, which reflect task requirements. Using different metrics often leads to
different conclusions.

PEREIEAR R R Z LR ) 091 R, RBRTHF TR, RARAHNBHRTRTLS

BURR #2458,



/.4 IPerformance Metrics

> Why Performance Metrics Matter? (H LA REHRKRITBREEE? )

* We divide data to evaluate models (& 117X 2-E & VI+R/ERR)

e We monitor training to avoid under/overfitting (& /11 M 429 25 VA8 %, K /L4

« Now we need quantitative measures to judge how good a model actually is (JL A&
ZMNEZZLBFRAGRLY 2 RA $3F)
Performance metrics are evaluation criteria for the generalization capability of
models, which reflect task requirements. Using different metrics often leads to

different conclusions.
MERRAEAR AR T ZAR ) AR R, RIRTEFER. RARENBERT RS
TR &k,




/.4 IPerformance Metrics

» Different Tasks, Different Metrics:

* Regression (&)3): Mean Squared Error, Mean Absolute Error, R-squared

 Classification (%%): Accuracy, Precision, Recall, F1-Score, ROC-AUC



/.4 IPerformance Metrics

> Metrics for Regression Tasks (E] )24+ 445 M 66 38 4%)

« Mean Squared Error (MSE) 39 F & £)

1 « )
MSE = — Z(yi — i)’

m <

AFy;RAFME, ViRMAE,

Characteristics (#£.%):

Sensitive to large errors (3f £ 458 % 1@# /&)
Commonly used as loss function (% ] fE# % 355 #t)



/.4 IPerformance Metrics

> Metrics for Regression Tasks (E] )24+ 445 M 66 38 4%)

« Mean Absolute Error (MAE) (FF3§ 45132 £)

1 «— :
mizl

AFy;RAFME, ViRMAE,

Characteristics (#£.%):

More robust to outliers (3% #1¢ € ##)
Interpretable in original units (T #/& % {2 ###&)



/.4 IPerformance Metrics

> Metrics for Regression Tasks (E] )24+ 445 M 66 38 4%)

» R-squared (Coefficient of Determination) (& & % %)

2 Z(yz v ??z’)z
S ) -,

« APy REEM, Vi RANE, Y;iR-FH4M,
- Interpretation (##%): Proportion of variance explained by the model
(L REAE 897 £ Ko b))



/.4 IPerformance Metrics

» The Confusion Matrix(3® % 4E ) - Foundation for Classification

- Binary Classification Scenario (=4 %% %):
Predicted: Positive Predicted: Negative
Actual: Positive True Positive (TP) False Negative (FN)
Actual: Negative False Positive (FP) True Negative (TN)

« TP (True Positive): Correctly predicted positive (.E 478 @] &5.E 1))

- FP (False Positive): Incorrectly predicted positive (Type I Error)

« FN (False Negative): Incorrectly predicted negative (Type II Error)
« TN (True Negative): Correctly predicted negative (.48 @] & 5 4])
 All classification metrics are derived from these four basic counts.
* FiR A RBAFARR B X WA AT



/.4 IPerformance Metrics

» Basic Classification Metrics
« Accuracy (B#H#R) TP
Meaning : The proportion of ALL samples that are correctly classified.
(B EH SRR S BHALNLY., )
Error Rate (#ix%) FP - FN

rror Rate ccuracy TP + TN 4 FP + FN
Best For: Perfectly balanced datasets where the cost of FP and FN is

Accuracy =

roughly equal.
RERT: AANZoFHNEESE, BLBEH(FP)Ffm 54 (FN) ¥ X4k,




/.4 IPerformance Metrics

> Basic Classification Metrics

 Precision (3 #% /&£ %) TP

Precision =
TP + FP
- "Of all samples predicted as positive, how many are actually

positive?"" 2 A AN A EHKFEERF, B SIS RAENEH? "

- The trustworthiness of a positive prediction. “When the model says
‘ves’, how often is it right?” 2 gk EFI MR GTEE. “SHETHL Z 4
B1&, CHhH % XBEZATH?




/.4 IPerformance Metrics

» Basic Classification Metrics
« Web Search (-##] - M43 %): When you search for “Python”, you

want the top results to be highly relevant (high precision). It's okay if

some relevant pages are not on the first page (lower recall).
o Lip# & “Python"s, RAZRITENERXRGERX (SHAR) . TUAET—
EMXRNBIEALALEZ—R (BEKEIH) ,



. A e
/.4 IPerformance Metrics  Can we afford to miss a positive case? -I'Jki’

>

TP

Basic Classification Metrics Recall =
TP + FN

Recall (Z g& /&4 %)

The model‘s ability to find all relevant positive cases. “Of all the actual

‘ves’ cases, how many did we find?”

A BBRBFTAAMKXES IR, “EHAREHR 'Y, BMNRET )77
Example - Medical Screening (#%# # #&): In a cancer screening test, it is

critical to identify every potential patient (high recall). It is acceptable

to have some healthy people undergo further testing (lower precision,
ie.,, some FP). A& EZHEF, RAEE—ANBLELZEXEE (HE9R) , 7T
NET—ERENAZETH—TRE (BMAHHAE, FF—2FP) .



/.4 IPerformance Metrics

7] _ o Precision x Recall™
> Basic Classification Metrics —ax Precision - Recall

« F1-Score: Harmonic Mean of Precision and Recall (3 # & f= & g &5

#=-F 35 %) The harmonic mean of Precision and Recall. It punishes

extreme values. (F#AEFZ RN Af-FHK. CETHMHBME. )
- Purpose: Provides a single, balanced score when you need to consider

both Precision and Recall equally. ¥k & 2R F % EH AL B L, R
A0, e 53K

- Best For: Situations where there is no clear preference for Precision

over Recall or vice versa, especially with imbalanced datasets. It is

more informative than accuracy here.
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> Basic Classification Metrics Precision x Recall

y Fsz = (1 %) %
+ FBak 5= (1+5) (8% x Precision) + Recall
« B > 1 favors Recall, B < 1 favors Precision, B = 1 is standard F1 (p >

124523 0%, B<l RAETHHAR)
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» Basic Classification Metrics
« Precision-Recall (P-R) Curve (P-R#j &)
- Plot Precision vs. Recall at different ‘T
classification thresholds (& 75 %&£ # 44  0.8F
TLFHHE vs. BEF) L 0.6
- Better than ROC curve for imbalanced ;04
datasets (X T A-FHHEL, WROCHELZ .|
)

L

. 0 —07 04 AO_.'6: 0.8
« Break-Even Point (-F#.%): Where & 4 F

P-R#y & 5-F# T & K

Precision = Recall (F#F = 8 9% 47,5)



/.4 IPerformance Metrics

» Basic Classification Metrics
« ROC Curve (Receiver Operating Characteristic Curve) (% &% L4

A AR 4%)

« Plots True Positive Rate (TPR) vs. False Positive Rate (FPR) at
various thresholds

* (AR BT %+ R E£(TPR) vs. B.EF(FPR))

« TPR = Recall = Sensitivity (A E% = 2w = RHE)

« FPR=—"_ (BE%) ©RAMBRIFEHEHN R PIEKBIE ., T

PF+TN

AR A R X
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/.4 IPerformance Metrics

> Basic Classification Metrics
« ROC Curve

ROC (Receiver Operating
Characteristic) Curve

AUC: Area Under
the ROC Curve

True Positive Rate

0 0.1 04 0.7 1
- FP
False Positive Rate —
TP TP ol e PF +TN

T=TPYEN m,
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> Basic Classification Metrics

ROC Curve: X}IL@E£

RE—LME, FRALOONMAMEE,

FER: APRA 10N REEMEL (EH) .
# T O0NMA MMELEHLX (AH]) . y 02 04 006 08

18 iE ) %
A T AHMRAEPI 2489 ROC ¥ &

REGEF AR LZAMA, RRAREF FERIR (AT 8 0 m A" 5 2)
FEX 100N A 5 T 487 2| “ s 7T 56 " HEAN A
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/.4 IPerformance Metrics os

2
E0.6F
» Basic Classification Metrics *
0.4f
+ ROC Curve: XMtMf N o

- X& (B¥HFE -FPR) - A
0 02 04 06 03 1
. ﬁﬁf%ﬁi ﬁtﬁ§nﬁ&no .%?ﬁf‘?aﬁfié’z;i;fioc B 4,
AXR: BB ERIFANITFARE | PTA IFANEI (YUA).
o ABAAALF., 0 ATREE—ANTFA 1 ATFRETAFTARLIBEIAT (EWET) .
- Y& (R#FFE - TPR/Recall) :
- XHENR RASRT.
AR BIRRARERGEEFRARE | A SXRANGER (10A).
« AZAN, 1 AFREHTATRARFKERT (ZERE) .
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» Basic Classification Metrics

FAEFTEST (BERS) - e, RFERHAE. 100%FH € AIFRANGT IR,
R WRILFRaWEITFA (FPREMK) , 2R ERFHIIATRE AN ERERE R RN
(TPRAARAR) .
AROCHB L, IANAEEALAETA (0, 0).

FRAIEF T (FARAK) - e, “TTEIR—F, RTaF—A4"

ARA X,
#X: RAEKE T KE2IFA (TPRIRS) , 22+ KBEIFA (FPRURSZ) .

Fr AL RA BT S A AR

AROCH b, aAEENRA LA (1, 1),

ROC# &, #RRAK ‘" 8 "mEL" R BrHF
F28 69— %% (FPR, TPR) .L:iESR&)%/

&
3 H- 2 0.6}
g /ﬁ- v ﬁ)i- 1

AUC

0 02 04 06 03
1B JE f5] F
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> Basic Classification Metrics
« Plotting the ROC Curve

- Data Preparation Phase: Let the dataset contain m+ positive
examples and m- negative examples.

- Sort all samples in descending order by the learner's predicted
scores.

- Dynamic Threshold Update: Sequentially take each sample's

predicted value as the classification threshold, initializing the

coordinate origin at (0,0).
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> Basic Classification Metrics
« Plotting the ROC Curve

Coordinate Recursion Rule:

For positive examples: New coordinates (X, y + 1/(m+))

For negative examples: New coordinates (x + 1/(m—), y)

Curve Generation Mechanism: Connect each coordinate point

sequentially with straight lines to form a stepped ROC curve.
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> Basic Classification Metrics
« Plotting the ROC Curve

A E-mﬂﬂ-ﬂﬂ-ﬂﬂ

FEARIE  —

P(+]x) 09 08 07 06 05 04 03 0.2 0.1
I_ r - -+ =+ + = 1pr=0/4;FPR=0/5 /
_|+ - -+t =+ * = 1pr=0/4;FPR=1/5 ‘ |
— M- - e TPR=1/4;FPR=1/5
\S _I_ t =+ * = |1pr=1/4;FPR=2/5
| |

—Ft ==+ =X "'I— TPR=4/4;FPR=4/5

=+ == {\IT T —I TPR=4/4;FPR=5/5
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> Basic Classification Metrics

ROC Curve (Receiver Operating Characteristic Curve) (% &% L4k

A AR 4%)
Diagonal Line (y = x): Represents the performance of a random

classifier (AUC = 0.5). KA oL BoitsE (AUC =0.5) .
Top-Left Corner (0, 1): Represents a perfect classifier (FPR=0,
TPR=1).R& X £4 £ & (FPR=0, TPR=1) .

A Good Model: Its ROC curve bulges towards the top-left corner.
AROCH &mA LA G,
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> Basic Classification Metrics
« AUC Purpose & Role (AUC# B # 54 R):

- Primary Purpose (%% H #j): To provide a single scalar value that

summarizes the entire ROC curve. It represents the probability
that a randomly chosen positive instance is ranked higher (has a
higher predicted probability/score) than a randomly chosen
negative instance.

s RBP—-NE—HHFREFERBEEANROCH &K, CEATHMEF AN EHFHFK,
FHL (AR [/FL) & TRALFE—A AP LGBE,

« AUCKHTZ T H AR HHER R E.
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> Basic Classification Metrics
» AUC Purpose & Role (AUC# B # 54 R):

« Interpretation (#i£):

« AUC = 1.0: Perfect ranking. (£. £#.%. )

« AUC = 0.5: No discriminative power (like random guessing). (XA
R 48 (GeREAGFR) . )

« AUC between 0.5 and 1.0: The higher, the better the model's
ranking ability. (B fiAkS, B HEA & RS, )

s CREHMALXH., WAFEEHAR AN E R BRI ERTY R 5 L7
RUARARE 7). AR FL AR R iE S AR AL OGS Ae LA,
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>

_Basic Classification Metrics

YEL S S

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

Feature (%% ,5.) Precision-Recall (P-R) Curve

ROC Cutrve

Performance on the positive (minority)

FOC S LY RS &\\ " 2
us (X 7Z &) class. B4 (2 2k) KeTHEAE,

Overall ranking ability between both
classes. g K Z_Ja] 89 EAKHE - fe

Highly imbalanced datasets where you
Best for care most about the rare class. & & I~

FH G RIEE, BARRXSHA £

Moderately balanced or imbalanced
datasets for overall model comparison. ¥
FREARTMO IR, T A

AP 3R ,

X-axis (X3d) Recall (TPR)

False Positive Rate (FPR)

Y-axis (Yh) Precision

True Positive Rate (TPR /Recall)

A horizontal line at the ratio of
Baseline (X %) positives in the dataset.

Fo I 42 b E A5 Lo AL 6 — KT

The diagonal line (y=x).
XA 2 (y=x)o
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» Cost-Sensitive Error Rate (X #-# 452 &)

* In standard classification, we treat all errors as equally bad. But in reality:

» ARRASRY, ANMBEHABZAAIRF~E, 2ARLE T

Y % # Lz K¥

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

Error Type (453% £ 7))

Example Scenario (7] ¥ =)

Real-World Consequence (5%
7 )z &)

False Positive (FP) (& iE47])

Medical test says you have
cancer (but you don't)

E 7 ARSIk &R (12 AR F
B )

Unnecessary anxiety, invasive
tests, wasted resources
b0y F e ZNEAEE.
TR IR

False Negative (FN) (& 1 41)

Medical test says you're healthy
(but you have cancer)

& 77 A M pARE R (2R &
)

Delayed treatment, disease
progression, potential fatality
ARG IT oA B, Bk
799 w1 5y
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» Cost-Sensitive Error Rate (X #-# 452 &)

* The consequences of different types of errors in real-world tasks are likely to
vary. To weigh the differing losses caused by various error types, an ‘unequal
cost’ may be assigned to errors.

* For example, in binary classification, a “cost matrix” may be defined based on

domain knowledge, as shown in the table below. Here, cost; denotes the cost of

predicting class i as class j. The greater the loss severity, the larger the difference

between cost,; and cost,,.
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» Cost-Sensitive Error Rate (X #-# 452 &)

* Under non-uniform cost, the objective shifts from minimising the number of
errors to minimising the ‘overall cost’. The corresponding cost-sensitive error rate

is then:

\

E(f;D;cost) = Z [(f(x;) #y;) X costy; + Z [(f (xi) # y;) X costy
z;eDT szD_ /



/.4 IPerformance Metrics

» Cost curve

* ROC curves show performance across thresholds but don't directly account for
different costs of errors. They assume equal cost for FP and FN.

* ROCHZR+=T AR HMTepHAE, 2XALESELRRABRARM. SR
R FPAFN& X A48 F .

* The horizontal axis of the cost curve represents the positive example probability
P X costol

cost with values in the range [0,1]. = p X costy + (1= p) X costyg

* The vertical axis represents the normalized cost with values ranging from [0,1].

FNR X p X costy; + FPR X (1= p) X costyy
p X costor + (1= p) X costyg
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» Cost curve

* Cost Curve Drawing Method:

1.0

Ja

% o.5F

-

FPR

ARt o 2%,

A B AR

FENR

0.5

IE 5] A8 F AR A

* 1. Single-Point Transformation: For any point (FPR, TPR) on the ROC curve, calculate its

false negative rate (FNR =1 - TPR), then connect the endpoints (0, FPR) and (1, FNR) on the cost

plane to form a line segment;

e 2. Area Overlay Principle: The region under this line segment represents the expected total

cost at the current classification threshold;

* 3. Global Lower Bound Fitting: Generate line segments for all points on the ROC curve. The

lower bound envelope formed by these segments represents the minimum expected overall cost of

the learner across all scenarios.

1.0



7.5 Bias and Variance

mz 57 %

Understanding Model Error
ERREURE
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» Why Do Models Make Mistakes?

*  When a model fails to make accurate predictions, the errors come from three fundamental

sources: (LARR Lk AARAG, RERAAZXLARER)

Systematic error in aiming (B4 42 &9 & 4 . : :
4 g (R 2 49 7 22 Using linear regression to fit nonlinear

Bias ({2 £) ‘I];iﬂz/:i—\?vays shooting too high data
. o 1 o LRI A JE RS
Variance (5 Inconsistency in shooting (4 & &9 7~ — Complex model overfitting to training
%) # M )Like shots scattered widely around  noise
- targetsbA% T3 £ B AR R B 5k g e A 3| S K IR B At A
Inherent randomness in the target ( B #F Measutement errors. random
& & AL )LI ' i ’
Noise (% %) 9 B A Fa A )Like wind affecting fluctuations

arrow flight

‘T!l 2 sz -‘;_\ ﬁ )L“ -
AR R oty 5 89 4T M 2iE £ RAALIKF)
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» Why Do Models Make Mistakes?

* Symbol Definitions and Problem Modeling:

* Let the test sample be denoted as x, which has data annotations yy,
(observations) and true labels y (true values). The prediction function
generated by the learner on the training set D is represented as f (x;D).
For regression tasks, the expected prediction error of the learning

algorithm can be formally defined as:

f(x) = Epl[f(x; D))
* The variance produced by different training sets with the same sample
number is var(z) = Ep [(f (#; D) — f(m)ﬂ
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» Why Do Models Make Mistakes?

* The difference between the expected output and the actual label is called the

o o . 2 2
bias, i.e.  bias*(z) = (f(x) —y)
* For the convenience of discussion, assume the noise expectation is zero,

i.e., Eplyp —y| =0, the generalization error decomposition.

E(f; D) =Ep [(f (25 D) - yo)’]
:ED]f@Jn—f@ﬂ+f@ﬂ—wﬂﬂ
:EDKfmgn—jmmf]+ﬁgﬂf@)—wﬂﬂ

+Ep [2(f (@ D) - f(2)) (F (=) —yp)]
=Ep |(f(x;D) - F ()| +Ep | (F (=) —p)”|

Fa) RPTH BARR LRI 2

XA EH O
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» Why Do Models Make Mistakes?

=Ep |(f (x; D) - f(m))Q_ +Ep |(f

=Ep |(f (25 D) =] @))"| + o [( @) ~)°| +Eb | (s~ y0)’]
+2Ep [(f (x) — v) (v — vp)]

Furthermore, assuming the noise expectation is zero, we obtain

B(f: D)=Ep |(f (@ D) = J(@))*] + (F(@) ~3)° + Ep | (0 — 1)’

1, The difference between expected output and actual outpu

(z) _y+y_yD)2}

2, The performance variation caused by changes in training sets of the same size

3. The difference between training sample labels and actual labels

So then: FE(f; D) = bias® (&) + var (x) + &

ZUZRET R hE TEE5%RE .
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» Why Do Models Make Mistakes?

Y=

BHWEX

in=ERM

BIRNHERY

bE(ETTE

= (Bias)

RO RBEETR S B SR R, B
Bias® = E [(f(z)) — v)?] (F(z) BERERE5E
£ | AORBEETION)

RE "FAE SUENEIAE, ERMSIZOERR (F
MSMEREHA SR ETR)

YGRS EANREER R (FEERRFEANE)

ERRE (NZLMERIT. RERRERN) ZESRE

IBIEEIEZAE (NIIRHE. DIERMIZR) | FEKH)|IZ5RAT1E]

.p‘m e
i ; i 1
2 i

N "
IJ‘- 3
% =

- Ly

Ty L
1948

ANHUE UNIVERSITY OF SCIENCE & TECHNOLOGY

BZE (Variance)

RERY MBI SRR REEE, BD

Variance = E [(f((z}; D) - f(z]))’] (f([=]; D)
RSP RIO T )

RE "WEIERAARE, REBSIZORR (FKins
FREYSIREETR)

IEFERER), BUHERERK (REZETRSE
B, iZIBENE)

SR (IRERENE. RRMNRERKX) 28575
=

R DERBISRE (NERE, i) . EINEUEE. S
F3 (ANBEHLFRIK)
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» Why Do Models Make Mistakes?

* Fitting highly nonlinear housing price data with linear regression

* High bias (underfitting, failed to capture price patterns);

* Fitting a simple task with only 10 samples using a deep neural network

* High variance (overfitting, learned sample noise, leading to inaccurate

predictions with different samples).
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Three-stage evolution of bias-variance tradeoft:
1. Underfitting stage: When model complexity
is insufficient, bias dominates (high bias, low
variance)

{a

2. Optimization transition stage: As training
progresses, the model gradually converges
toward the variance-dominant interval

" I.I ‘ll "U I.:.l
k) _':Ifljn. I -"_.{H-‘_

3. Overfitting risk zone: After sufficient
training, variance becomes the primary Bl 2.9 ZRELGE. FENREFER
conflict (low bias, high variance)



